

Cyber Trust

Handbook for improving
security in wireless
product

Business Case Secure Wireless Technology Platform in

Work Package 3: Securing Platforms and Networks

Markku Kylänpää VTT

Raino Lintulampi Bittium Wireless

Pekka Pietikäinen University of Oulu

Tero Takalo Capricode

2 (49)

Table of Contents

Introduction .. 3

Integrity Protection ... 4

Utilizing Fuzz Testing in Agile Test Automation ... 15

Product security incident response team ... 26

Device Management by 2020 .. 39

3 (49)

Introduction

This document is an output from the business case Secure Wireless Technology Platform

which is part of Work Package 3: Securing Platforms and Networks. The objective is to give

an overview of selected tasks executed in the business case during the Cyber Trust

program in a more general level. Because this is the last deliverable in the business case it

is also an input for the program’s dissemination publications which will be finalized in the

program’s last phase.

The focus in this document is the improvement of the security of wireless product during the

product’s life cycle from development to the product’s end of life. The first two articles

describe issues which need to be taken into account in designing the secure product. In

Integrity protection it is described how the software’s integrity can be maintained and

possible changes by malware can be detected without a delay. Integrity protection requires

hardware trust anchor and mechanisms to protect both boot chain and user space

components. Integrity protection ensures that the platform software’s integrity is kept.

No design is perfect and less is the implementation. Therefore testing is needed and fuzzy

testing has turned out to be a very effective testing method. Article Utilizing Fuzz Testing in

Agile Test Automation introduces methods to make fuzzy testing more effective and easier

to use.

Implementation is not perfect but neither is testing. This is especially true today when

product software is built using hundreds of open source components. Article Product

Security Incident Response Team describes how product software’s vulnerabilities can be

easily and constantly monitored until a product’s end of life.

Finally the article Device Management by 2020 addresses practical issues which should be

considered in the future while there are connected devices nearly everywhere in our living

environment.

4 (49)

Integrity Protection

Markku Kylänpää, VTT

Executive summary

Guidelines for integrity protection methods are given. Integrity protection requires hardware

trust anchor and mechanisms to protect both boot chain and user space components. Linux

kernel contains multiple alternatives for integrity protection. Remote attestation mechanisms

can be used to provide integrity proof of a connecting client to a remote server providing

service to the client.

Introduction

Integrity protection mechanisms are needed to prevent unauthorized modifications to system

software and applications. Sometimes this can even be a safety issue if unauthorized

modification is causing danger, like radio interface exceeding permitted Specific Absorption

Rate (SAR) values. Integrity protection is also a corner stone of security and it is needed to

guarantee that all protection mechanisms expect to operate as designed. Whether there are

complex access control or Digital Rights Management (DRM) mechanisms to protect

content, those all will fail if attackers are able to manipulate components that are supposed

to be trusted. Therefore, trust requires that integrity of components handling confidential

information should be verified before these components are used.

Integration protection mechanisms are developed to support chained verifications where

each component in boot chain is verifying the next component before passing control to it.

For example, the first stage bootloader should verify the second stage bootloader and the

second stage bootloader should verify kernel image. Verification is typically done by

calculating cryptographic hash of the component and then verifying the result using the

signature of the verified image. This verification chain requires that there is a trusted starting

point. The system must have security hardware like Trusted Platform Module (TPM) or ARM

TrustZone, which allows binding of device identity and the use of device specific signing

keys.

System integrity is a basic building block for all trusted systems. Attackers may want to

break into the system and can try to modify system software. Limiting physical and network

access to the system has been a simple way to protect systems but it is not feasible

approach with highly connected devices. This means that integrity protection mechanisms

are needed to mitigate these threats. Integrity protection mechanisms can be split into

categories:

- Root of trust

- Integrity protection of early boot and kernel

5 (49)

- Integrity protection of userspace

- Providing integrity proof to remote systems

These categories provide different mechanisms for integrity protection.

Data integrity models

Various formal models of data integrity can be used to formalize data integrity goals. In

general, main goals are prevention of unauthorized modifications and maintenance of

internal and external consistency. Biba and Clark-Wilson integrity models are two most well-

known data integrity models.

Biba model assumes that users processing information are bound to certain integrity level

and they can only create content at or below their own integrity level and view content at or

above their own integrity level. This concept is also known as “write down, read up”. Typical

clarifying example is military officers writing orders to lower officers that should follow orders

of their superiors and not take orders from lower rank officers. This model does not cover

confidentiality issue at all and is in fact exactly opposite to well-known Bell-LaPadula

security model that is often characterized as “write up, read down”.

Another well-known integrity model Clark-Wilson maintains integrity by restricting access to

integrity protected data to a small set of procedures. Clark-Wilson splits data sets to

Constrained Data Items (CDIs) and Unconstrained Data Items (UDIs). CDIs can only be

accessed and manipulated using Transaction Procedures (TPs). Integrity Verification

Procedures (IVPs) can be used to verify that CDIs conform to the integrity constraints.

Instead of classic access control matrix with subjects accessing objects, there is Clark-

Wilson triple - subject/TP/object.

FreeBSD kernel contains implementation of the Biba integrity model as an optional

component. All system subjects and objects are assigned integrity labels that are ordered.

Thee implementation also assumes few special labels that can be used in situations where

strict Biba model does not work.

Hardware trust anchor and root of trusts

Platform security approaches assume having a minimal Trusted Computing Base (TCB) that

is stored in immutable storage. This TCB can contain boot sequence code, minimal crypto

library. Also small set of data like trust root (e.g. hash of the public key) and device identity

(e.g. serial number).

Integrity protection mechanisms typically assume that there is a minimal immutable

initialization code often called the “Core Root of Trust for Measurement” (CRTM). The code

is executed after system reset from immutable storage e.g. boot ROM and should always

behave in the expected manner.

6 (49)

“Static Root of Trust for Measurement” (SRTM) is a mechanism defined by Trusted

Computing Group (TCG). After system reset each component in a boot chain is measured

by the predecessor code before control is passed to the component. Measurement value is

then extended to one TPM Platform Configuration Register (PCR).

Figure 1 Static Root of Trust for Measurement (Source: blog.fpmurphy.com)

“Dynamic Root of Trust for Measurement” (DRTM) is a mechanism supported by Intel and
AMD. Intel Trusted Execution Technology (TXT) and AMD Secure Virtual Machine (SVM)
technologies contain platform enhancements and extra processor instructions to allow the
launch of measured environment without resetting the system.

Figure 2 Dynamic Root of Trust for Measurement (Source: blog.fpmurphy.com)

Boot integrity protection

Integrity protection should start at boot time. Boot process can be constructed so that each
component verifies the next component before passing control to the next component. This
chained verification mechanism also requires reference values to verify integrity. Reference
value is typically a signature that is signed using a certified key. If verification fails, there are
two options. Boot process can be terminated. Alternatively, boot process can continue but
user is notified that verification has failed. Some system allow measurement of components
using security hardware e.g. TPM.

7 (49)

Booted kernel should also include protection against code loading. Either the kernel should
be static, without support for loadable kernel modules, or all loadable kernel modules should
be signed. The kernel modules must be verified before loading.

Secure boot

A boot sequence starts execution from a fixed code that is typically called a boot ROM. The
boot ROM then loads a boot loader code that starts kernel. There can also be a chain of
boot loaders for different boot stages. Open systems have no restrictions for code loading.
Closed systems have closed boot loaders that only load authorized software.

Secure boot requires that the loaded code should be authorized to execute. This can be
achieved by requiring that there should be a matching signature of the loaded code that can
be verified. The public key to be used should be verified already in boot ROM. For example,
the boot ROM could calculate a cryptographic hash of the public key and compare it to an
immutable reference value. Alternatively, the key itself can be a part of the boot ROM.
Secure boot systems have closed boot loaders that only boot authorized software. If
verification fails, the system will not boot.

Verified boot

Verified boot is a variation of secure boot that can be less strict and can allow end user to
make a final boot decision in cases where non-standard system state or software is
detected. For example, Android has a boot colour concept (see Figure 3) that is used to
notify users about non-standard system configuration. However, even in this case the device
manufacturer has many control points. If the device manufacturer does not provide
mechanism to unlock the device and embed extra OEM keys then verified boot mechanism
can be very similar to secure boot.

8 (49)

Figure 3 Android Verified Boot (Source: Google)

Authenticated boot

Authenticated boot (sometimes also known as measured boot) is a mechanism where boot
chain stores measurements of the launched components to integrity-protected storage.
Typically, Trusted Platform Module (TPM) Platform Configuration Registers (PCRs) are
used. There are TCG specifications that specify what components are measured and what
TPM PCRs are extended to store these measurements. Authenticated boot is passive boot
method. Neither user nor components in boot chain make any boot continuation decisions.
Boot chain components are just measured and measurements can later be used to prove
system state.

Figure 4 Authenticated boot (Source: William A. Arbaugh)

Trusted boot

Trusted boot also measures all boot stages but also implements secure boot functionality
allowing only authorized components to be loaded. Trusted boot is a combination of
authenticated boot and secure boot. It should always boot into trusted state but it can also
provide measurements that can be used to attest boot state.

Userspace integrity protection

Introduction

Boot integrity is crucial as modification of boot components allows attackers to control kernel

and kernel has access to all data in systems. However, also attacks against user space

components can be used to gain control of systems. Attackers that are able to replace

system services can also gain access to confidential information.

Secure boot concept often verifies only various boot loaders and booted kernel. Small

systems can afford verification of the whole system image as large binary blob before

executing the first binary executable (init program in Linux). However, as the size of the

system image increases this approach becomes non-feasible, as verification of large image

9 (49)

will slowdown boot. Other methods that interleave verification with execution have been

developed. Main purpose of the integrity verification is to protect against offline attacks.

Linux Integrity Measurement Architecture (IMA)

Integrity measurement

Instead of verifying everything at once as one blob, it is possible to verify files when files are
first time used. Integrity Measurement Architecture (IMA) subsystem in Linux kernel can be
used to take measurements of executable files and by default also all files read by the root
user. If the device has TPM, the measurement is also extended to one of TPM PCRs.
Remote verifier can then request attestation and check status of the system.

IMA provides a measurement list of all measurements taken. All components are measured
only for the first time and will not be measured again unless the file is modified. The list is
also available to userspace as Linux kernel securityfs entry.

PCR SHA1 template hash Template SHA1 file hash Filename
 10 9f4dee7500339f81373ffc7ef1588ee04ff348cc ima-ng sha1:9797edf8d0eed36b1cf92547816051c8af4e45ee boot_aggregate
 10 0be1aded7ca430f3a823ffa0c983bd2f3f91ecde ima-ng sha1:b51a9c6c695ec818dae60a15554c80c891c99227 /etc/preinit
 10 c51dc35733735dd17d2d7459dd28fc08d6bcfcd8 ima-ng sha1:c3c199e5ba3706b0ee2937266f6da71c2e13a63f /bin/busybox
 10 d3a4e796559b5d53e240fc1cabd4534a6e49ad18 ima-ng sha1:ed9c9db11fc54ec66e0a8c0ee344bc67b4ac9774 /lib/libc.so
 10 a96af84d01931b3d956251792988fd87260cac61 ima-ng sha1:19bacb1637249596f4d11fdb0d4a94d1d27c498c
/lib/libgcc_s.so.1
 10 a372aa9516827d8c03cce913dc6de412739401a0 ima-ng sha1:c6ab0fcaf6347bf7808ab48b4e951958f925274f /sbin/init
 10 6abe18d7f83c801ec8f2ba1e15826bbd785b79d0 ima-ng sha1:41404f2c907da4807770b055484dfd544290b566 /lib/libubox.so
 10 49eaaeb81f0d2a36456bd15f3287edca171a62e1 ima-ng sha1:7142db81e3bf7ea0f502e28266b04464c4bc61fa /lib/libubus.so

Figure 5 IMA measurement list example

IMA measurement mechanism is policy driven. There is a built-in policy that can be enabled
but also custom policy can be later loaded using securityfs file interface. Policy can be used
to specify measurements when IMA specific hooks are triggered in kernel. Either “measure”
or “dont_measure” rules can be used. BPRM_CHECK rule enable measurement of
applications and scripts that are started as commands. FILE_MMAP rule can be used to
trigger measurement of shared libraries. The third rule FILE_CHECK triggers measurement
when a file is opened.

The rules can have additional specifiers that could limit the rule for certain operation e.g.
MAY_READ for reading operation. There are also file system type specifier (fsmagic) that
can be used disable measurements from pseudo file systems like procfs, sysfs, tmpfs, and
securityfs. In addition, security module labels (e.g. SELinux) can be used in rules.

action: measure | dont_measure
condition:= base | lsm
 base: [[func=] [mask=] [fsmagic=] [uid=]]
 lsm: [[subj_user=] [subj_role=] [subj_type=]
 [obj_user=] [obj_role=] [obj_type=]]

base: func:= [BPRM_CHECK][FILE_MMAP][FILE_CHECK]
 mask:= [MAY_READ] [MAY_WRITE] [MAY_APPEND] [MAY_EXEC]
 fsmagic:= hex value
 uid:= decimal value
lsm: are LSM specific

Figure 6 IMA policy language

Integrity appraisal

IMA measurement mechanism itself does not provide any protection but unauthorized
modifications can be detected if files are measured and measurements are compared to

10 (49)

known good whitelist values. There is also local verification mechanism that is utilizing IMA
measurements. IMA appraisal concept compares stored measurements into reference
values that are stored as extended attributes of the file. Extended attribute security.ima is
used. The value should be integrity protected by either using HMAC or digital signature. IMA
appraisal mechanism is policy driven. IMA policy can contain “appraise” and “dont_appraise”
rules using the same policy language as IMA measurement mechanism. IMA and EVM
policies are loaded together.

Extended Verification Module (EVM)

Linux security frameworks SELinux or Smack use their own extended attributes that should
be integrity protected. Extended Verification Module (EVM) can provide protection to these
attributes by adding a new extended attribute called security.evm that contains signed hash
over these attributes. Extended Verification Module (EVM) can be configured to protect the
following extended attributes if they exist:

- security.ima – IMA reference hash values.
- security.selinux – SELinux file object labels

- security.SMACK64 – Smack security module file labels
- security.SMACK64EXEC - Smack security module file labels
- security.SMACK64MMAP - Smack security module file labels

- security.capability – File system capabilities

EVM is using either HMAC or digital signature. Optionally also filesystem identifier can be
included so that extended attribute cannot be copied from other filesystem.

Strengths and weaknesses of the IMA approach

File-based verification has many problems. File-hierarchy pathnames can be manipulated by
using hard links and mounts. In addition, directory content should be verified as sometimes
also removing files can be used to manipulate the system. For example, if configuration files
are read using search path, and if the first file is removed, configuration settings are then
read from the next file found from the search path. The configuration may be different
allowing attacker to gain access to the system.

Another problem is that large files are verified although only part of the file is mapped and
used. This could be a problem if large media file or very large shared library is measured.
However, as the measurement is only done once this is a problem only during boot time.

Main strength of IMA is that it provides a measurement list that can be used in remote
attestation.

Dm-verity

As IMA is measuring files the whole file must be read into memory before it is verified.
Sometimes this can be slow and unnecessary. Sometimes only small part of large libraries
or verified multimedia files should actually be executed or read. The IMA approach forces
the whole file to be read but fortunately only during the first execution/reading. Block based
verification alternative does not suffer from this limitation. Linux kernel has a block based
verification mechanism called dm-verity. Dm-verity is limited to read-only volumes. There is
also unofficial patch set called dm-integrity that is supposed to work also with read-write
filesystems. Dm-verity requires separate storage location for integrity reference data.

11 (49)

Figure 7 dm-verity hash tree (Source: Google)

Dm-verity hash tree is created by first calculating SHA256 hash of each 4kB block. These
hashes are then concatenated and split into new 4kB blocks. SHA256 hashes of these new
blocks is calculated and new next leyer blocks are created. The process is repeated until
there is just one SHA256 hash called root hash. This hash value is then signed.

Encrypted filesystem

Conventional encryption modes used with full-disk encryption (e.g. AES-XTS) can only
provide confidentiality but no support for integrity verification. Attackers may try to modify
encrypted content and be able to affect to system behaviour as modifications are not
detected. Although embedding own code would be difficult, the attacker could still find ways
to modify the system so that e.g. some server is crashing.

The use of authenticated encryption could be used to detect offline modifications.
Authenticated encryption modes (e.g. AES-CCM, AES-GCM) include also MAC calculation
to encryption process and MAC verification during decryption process. Decryption key must
come from secure storage or it should be derived from the passphrase that is requested
from the user. Drawback of this approach are performance penalty and need to store
additional integrity data. Many algorithms also require non-predictable Initialization Vectors
(IVs).

Signed binaries

As many systems do not utilize extended attributes all protection mechanisms that rely on
extended attributes require many modifications to the system. In addition, block-based
integrity is only feasible for read-only module and requires also additional raw partition to
store reference values. If the target is to protect only native executables then one option is
to add signature to executables. The signature can be added as new section to ELF file
header and the kernel can contain verification code. Signed files must be verified so that the
signature part is either skipped or treated to contain constant value (e.g. zeros) during hash
calculation.

Local verification against stored white list

MeeGo security framework called Mobile simplified security framework (MSSF) also
included integrity protection subsystem called Validator. Instead of binding signatures to a
separate ELF header section all cryptographic hash values can be added to a list with
corresponding pathname. The list should be signed and software installer could update the
list. The list will be loaded into kernel during boot and pathnames are replaced by inode
numbers so that corresponding hash value can be found in kernel when the file is executed.

12 (49)

Software updates

Introduction

Software update mechanism is needed, as there is a need to add new functionality or fix
detected problems. The updates either fix functionality problems or detected security
vulnerabilities. As system software often is a combination of open source software and third
party Commercial off-the-shelf (COTS) software, used in multiple systems, there may be
many known vulnerabilities and also many fixes waiting to be updated to the devices.
Smooth, fast and efficient software update mechanism is a crucial protection against new
threats as vulnerable software versions can be utilized by attackers. However, update
mechanism can also be a source for many problems as attackers may be able to misuse it
to import malware to system. All updates must be verified before installation Both code
integrity and source authenticity must be verified.

Firmware blob updates

The simplest update mechanism is to update the whole system image by flashing new
firmware image that contains updates to fix vulnerabilities and functionality problems. When
the size of the system grows also the update package is larger. The firmware blob should be
signed image and system should verify the image before flashing it to persistent storage.
Storage must be separated to immutable read-only area containing system software and
writable area containing data. This update mechanism is suitable for small systems but can
be also used for larger systems as reinstall.

Software package updates

Another common approach is to group software components to software packages that can
be installed, removed, and updated. This will reduce the size of the update as only those
packages that are changed must be updated. Package manager should have a list of
software package versions and also package dependencies and potential conflicts.
Updating read-only volume requires that the volume should first be remounted as read-write
volume for the update. Also all software packages must be verified before installation.

Most packaging formats and systems support signed packages and software source can be
restricted to well-known official repository (e.g. Google Play, Ubuntu official repositories).
Open systems also support side loading so that also non-repository packages can be
installed.

Binary diff updates

If system software image is used as a read-only blob then one alternative for update is to
send a binary diff file that can be used to patch the blob so that it contains updates. The use
of binary diff will reduce the size of updated data so that it is feasible to download updates
using also slower channel. These updates are often called Over The Air (OTA) updates. As
in other cases, also in this case the origin and integrity of the update must be verified before
installation. The update should also identify the software version that is required and
installation to other versions should be prevented.

Live kernel updates

System updates typically require at least stopping and restarting of those services that are
updated and reboot is often needed. System providers try to minimize reboot requirements
but so far update of system core components has required reboot. Reboot requirement may
cause users to delay software update to more appropriate time leaving them vulnerable to

13 (49)

attacks. So far, at least kernel updates have required rebooting of the system. However,
newest Linux kernels can be updated without rebooting the system.

Downgrade prevention

Many systems prevent reinstallation of old software versions if user has already installed
newer software version. The old version may contain vulnerabilities that are already fixed in
the new version. Sometimes users want to misuse these vulnerabilities e.g. if those
vulnerabilities allow unauthorized access to DRM protected content. The system could store
the version number of the last installed software version and prevent to rollback older
software version.

Software updates

Introduction

When accessing remote services it is useful to be able to provide a proof of integrity to a
remote service. Service provider might have requirements, policies, and different service
classes for connecting clients.

Attestation is a process of validating integrity of a computing device. One way to do this is to
record measurements when program code is executed. These measurement records should
then be stored in integrity protected storage. Attestation may be done locally so that the
measurement is compared to a stored reference integrity value and typically code execution
is prevented if the measurement does not match to the stored reference value. Another
alternative is a remote attestation where a remote verifier wants to have integrity guarantee
of the connected device. The process includes transferring integrity measurements from the
connected device to the remote verifier with proof of origin and freshness.

Security module

Attestation systems must have some kind of security module that can store keys, perform
signing operations, and integrity protect measurements. Remote attestation requires that a
reply message to an attestation request should contain a proof of origin. This can be
achieved by signing the reply message with an asymmetric key that is stored in security
module and whose public part is certified. Also integrity of the measurements is best
achieved by using security module to protect integrity and of measurements. TPM is typical
security module in PC devices. Mobile devices could use e.g. ARM TrustZone-based
approaches.

Measurements

Attestation measurements are typically taken by calculating cryptographic hash of the
content. SHA1 algorithm is still typically used but newer specifications allow the use of other
cryptographic hash functions as well. Measurements are stored in the measurement log.
TPM-based systems also use the so called TPM_extend operation to store a hash chain to a
register of the security module called PCR.

Attestation protocol

Attestation request message should contain a nonce value that is used to protect freshness.
The reply message should contain a signed blob with the nonce value and integrity proof of
the measurement log which is the value of the PCR. The reply message also contains the

14 (49)

measurement log that does not have to be signed. Integrity of the measurement log can be
verified using the PCR value.

Figure 8 Remote attestation

Verification

The first part of the verification is to verify the signature of the signed blob and to check that
the message has been signed with the certified key that has not been revoked or expired.
The verification phase also requires that the verifier recalculates the PCR value that is
received as part of the reply message. After these operations the individual measurements
should be compared to known reference values.

Conclusions

Integrity protection requires mechanism to protect both components of the boot chain and
userspace components. Hardware-based trust anchor is needed to establish root of trusts
for measurement. Linux kernel provides many alternatives to integrity protection. Either file-
based or block-based approach can be used. Software update mechanism should also be
protected as it can be misused to install malware to the system. Remote attestation can be
used to provide integrity proof of the system to remote verifier.

Further reading

N.Asokan & al., Mobile Trusted Computing, Proceedings of the IEEE, nro 8, August, pp.
1189-1206, 2014.
Will Arthur, David Challener: A Practical Guide to TPM 2.0: Using the Trusted Platform
Module in the New Age of Security, ISBN-13: 978-1430265832, Apress, 2015
Global Platform, GlobalPlatform made simple guide: Trusted Execution Environment (TEE)
Guide, [Online]. Available: http://www.globalplatform.org/mediaguidetee.asp.

David Safford, Serge Hallyn, Dmitry Kasatkin, Reiner Sailer, Mimi Zohar, Integrity
Measurement Architecture (IMA), IMA wiki site, URL: http://sourceforge.net/p/linux-
ima/wiki/Home/
J. Corbet, dm-verity, Linux Weekly News, September 19, 2011, [Online]. Available:

https://lwn.net/Articles/459420/

15 (49)

Utilizing Fuzz Testing in Agile Test Automation

Pekka Pietikäinen, University of Oulu

This chapter is based on "Steps Toward Fuzz Testing in Agile Test Automation" authored by

Pekka Pietikäinen et al. in International Journal of Secure Software Engineering, vol 7(1).

Copyright 2016, IGI Global, www.igi-global.com. Posted by permission of the publisher.

Executive Summary

Including and automating secure software development activities into agile development

processes is challenging. Fuzz testing is a practical method for finding vulnerabilities in

software, but has some characteristics that do not directly map to existing processes. The

main challenge is that fuzzing needs to continue to show value while requiring minimal

effort. A key question is the availability of the skills required to setup an effective fuzz test

campaign. The Software Security Group is pivotal, but eventually testing will have to be

done by developers with the proper tools and skills. Setting up ways of working to make

fuzzing more effective is one way of doing this. We present experiences and practical ways

to utilize fuzzing in software development, and generic ways for developers to keep security

in mind.

Introduction

Software security vulnerabilities are not a new phenomenon. With the increasing amount of

digitalization in society, the impact of vulnerabilities becomes more threatening. For

example, web browser vulnerabilities have resulted in widespread intrusions and the

existing exploit kits continue to be a cost-effective means of installing malware. Techniques

such as data execution prevention (DEP) and address space layout randomization (ASLR)

make exploitation of bugs more difficult than before, and sandboxing techniques are

becoming widely used means of isolating code that processes potentially malicious data.

While these advances help in making exploitation significantly more difficult than it was a

decade ago, they do not make it impossible. The problem of finding and fixing

implementation level security issues has remained largely unchanged from what it was a

decade or even two ago, mainly due to the same programming languages being used for

writing software.

Fuzz testing (fuzzing) is a practical way of testing software for security vulnerabilities arising

from processing external input and is usually included in secure development lifecycle

models. In 2015, nearly all high-impact vulnerabilities with a Common Vulnerabilities and

Exposures (CVE) entry were found with fuzzing. Fuzzing is clearly something that should be

done when developing secure software, but applying it efficiently as a part of an agile

process can be challenging.

A major challenge comes from test automation. Continuous Integration and Delivery

(CI/CD), Test Driven Development (TDD) and Behavior Driven Development (BDD) all aim

to provide mechanisms for delivering working software quickly, in small increments. Fuzz

16 (49)

testing campaigns do not directly map to the used workflows, and thus can easily be seen

as a complicating add-on by developers.

Another difficulty comes from lack of suitable personnel. Teams need to test, instrument and

correctly interpret the results of fuzzing in a multitude of environments, test legacy code,

previous features as well as new functionality. Including a security expert in each

development team is infeasible. To overcome this, organizations often have a central

“Software Security Group”, which can be overburdened and difficult to scale to the needs of

different project teams. In this paper, we describe experiences in utilizing fuzzing as a part of

a software development process, and present practical ways to utilize fuzzing in software

development, and present generic ways for developers to keep security in mind.

Fuzzing

Fuzzing generates invalid or random inputs and injects them into a program. This technique

can be used as such with very simple instrumentation to perform black box testing, usually

combined with relatively simple heuristics for detecting obviously erroneous program states,

such as fatal signals, or in a more white-box fashion, such as runtime program tracing to

gain insight, which can be used to control the data generation.

One of the important properties of fuzzing is that one can start testing a program with very

little knowledge about the target, and gradually refine the testing by improving the test cases

and instrumentation. As an additional benefit, each found issue comes paired with a proof of

concept input that can trigger the error, which proves that the bug can be triggered

externally. This is unlike static analysis tools, which locate bugs in software, but do not

easily demonstrate how the affected code can be reached in practice. This is especially

important for programs like web browsers, where nearly all input is from an untrusted,

potentially malicious, source.

Fuzzing consists of the following phases:

1. Identify target

2. Identify inputs

3. Generate fuzzed data

4. Execute fuzzed data

5. Monitor for exceptions

6. Determine exploitability

These phases can roughly be mapped to agile software development practices, which we

will now describe.

Identifying attack surface through threat modelling

The target, obviously, is the software under development or an external dependency of it.

The targeted component can typically be reached through a number of interfaces, such as

“HTTP request over network” or “Read PNG file from local file system”, each using some

more or less defined protocol. These are identified during threat modelling. Threat modelling

can be done using a variety of methods, e.g., the Microsoft STRIDE model.

17 (49)

An example of a DFD that could be used as a basis for fuzzing is shown in Figure 1, which

shows how a web browser interacts with other components. It sends requests to web

servers. The server responds with content the browser processes internally or using external

libraries or plugins. The content crosses a trust boundary, from the untrusted Internet to the

browser process, which has access to, e.g., operating system facilities and data owned by

the user who runs the browser. A more complete threat model would show these, as well as

sandboxes used to isolate components that are known to have risks, such as external

plugins.

Figure 9 Simplified Threat Model of Web Browser

Threat modelling produces a list of interfaces to fuzz, which can be prioritized and placed on
the product backlog.

Test case generation and execution

There are several approaches to test case generation in fuzzing. It is usually divided into

two categories: generation-based fuzzing and mutation-based fuzzing, both of which have

benefits and drawbacks.

Generation-based fuzzing is based on a fixed model of the input space, which is then used

as a basis for building test cases. In some cases, this can be done directly from source code

of the software to be tested, but often must be done separately. The method works very well

with protocols and file formats that have a formal specification, from which the model can be

inferred. While the model is often tree-structured, as are the protocol definitions, the model

can also include fields, such as checksums, which are used by implementations to

determine whether the input is valid. One of the important factors of exact models is that

essential fields such as these can be automatically filled correctly making it much more likely

that the target program does indeed process the contents of the test case instead of just

dropping it as invalid. The main downside of generation-based fuzzing is that developing a

comprehensive test suite including all the models is a major manual effort, as the test suite

is essentially a minimal implementation of the software to be tested.

If the specification changes during the project, as it is often the case in agile projects, so

must the model. Therefore, they are mainly of use for parts of the project where the model

18 (49)

remains constant, or which are considered critical enough to justify building or purchasing a

test suite.

Mutation-based (or template-based) fuzzing operates based on samples of data produced

by valid implementations. Most mutation-based fuzzers operate by making simple changes

to the data without any knowledge about the semantics. Typical mutations include flipping

bits at random, omitting data, repeating data and writing random data somewhere. Even

though they lack the finesse of generation-based fuzzers, these black-box tools are

important due to their ease of use and the fact that they can be made general purpose.

Even the drawback of not understanding the exact protocol semantics can be worked

around, e.g., testing against a system under test (SUT) that has checksum verification

disabled makes it possible to improve test coverage without adding support for calculating

the checksum into the fuzzer.

Radamsa
1
 is a collection of mutation-based fuzzers, which has the primary objective of

being as simple to use as possible. Unlike most similar tools, it is intended to work for just

about any kind of data without any extra configuration. It does some simple heuristics on the

input data (binary or ASCII), and the operation of which ranges from trivial common

mutations to more novel ones, which often approximate the operation of generation-based

ones.

When the best fuzzing strategy for a given interface is identified, a task to automate it can

be placed in the backlog. Depending on the interface and chosen tools, this task may take

anything from minutes to months. The simplest programs to fuzz are command-line based

tools taking an input filename as a command line argument. These only require a fuzzer and

some sample input files to get started. On the other end of the spectrum, the tested

interface may be an encrypted network connection where a stateful cryptographic

handshake is needed to reach a state where the test case can be injected. In this kind of

scenario, sample collection, injection and test automation (or building a model) become

much more involved.

Instrumentation and analysis

The aim of fuzzing is to find undesired behaviour in software. Crashing is obviously such,

but the effects of fuzzing can also be very subtle. An example of this is the Heartbleed

vulnerability, where the response to a fuzzed test case was an abnormally large reply, which

contained sensitive information, such as private keys.

For the common case of detecting crashes, building a test oracle is relatively simple, as

current operating systems and compilers provide good facilities for it. The ideal output is an

uncorrupted crash dump, which pinpoints the exact location in the code where the problem

occurred. The fuzzed test case could cause severe memory corruption, so the program

should notify the user as soon as anything abnormal occurs. Memory debugging tools, such

as AddressSanitizer, MemorySanitizer and Valgrind help to ensure that the error is detected

once it occurs, before corruption occurs. These tools are designed to reveal different types

of errors, and have different impact for the performance of target program, so the possibility

of using different instrumentation tools during testing should be considered.

1
 https://github.com/aoh/radamsa

19 (49)

For detecting other types of failures, a model of SUT behaviour is needed. For fuzzing

purposes, the most trivial approach is valid case instrumentation, where a valid operation is

performed on the interface. If the interface does not reply with a known valid reply, the test

case is assumed to have caused a failure. Unfortunately, this approach only finds the most

catastrophic failures.

When a suitable test oracle is developed, the question of integrating it into the software

development process remains. Undesired behaviour needs to be transformed into an issue,

which is fixed by a code commit. Furthermore, a regression test is added as a unit test, and

the fix has to be released and communicated to customers.

For a static model-based test suite this is not an issue, i.e., “Test #6423 fails” maps to

commonly used workflows. If the input has a random element, as in mutation-based fuzzing,

the same issue can most likely be found with several similar inputs. The root cause is the

same, so only one issue should be filed. The issue should contain a fully reproducible,

minimized, test case. The impact of the defect can be automatically analysed (NULL pointer

dereference, stack overflow), but the results are not completely reliable.

Fuzzing as a part of Agile Secure Development Lifecycles

In response to the growing impact of software vulnerabilities, a number of efforts to improve

software development processes to mitigate the effect of vulnerabilities have emerged. Each

company has its unique set of business, technology and cultural constraints, which affect

the set of activities that are the most beneficial.

Building Security In Maturity Model (BSIMM) is a framework for measuring software security

initiatives. Instead of being a guide for secure development, it is based on real-world data

from sixty-seven real software security initiatives from a variety of companies. BSIMM can

be used to determine the maturity of a given initiative. In BSIMM, fuzz testing is considered

as an intermediate (Level 2) or advanced (Level 3) topic in security testing. (McGraw,

Migues, & West, 2013)

OpenSAMM (Chandra, 2009) and SAFECode Fundamental Practices (SAFECode, 2011)

are prescriptive frameworks for measuring the maturity of security initiatives. OpenSAMM

does not explicitly cover fuzzing, but includes automated testing tools as a Security Testing

activity. SAFECode provides specific guidance on fuzzing, including suggestions for tools.

The drawback of the previously presented approaches is that they give very little detail on

how to introduce fuzzing, and how the introduction of fuzzing is seen inside the software

development organization. A common minimum requirement is a data flow based threat

model, which serves as a risk-based list of interfaces for fuzzing. Several hundred thousand

cases are needed to have basic assurance on the robustness of each interface. If test case

injection is slow, even this may be difficult to justify. Finally, evidence that testing has been

done for each software increment is required.

In the next section, we describe practical experiences related to the introduction of fuzzing,

which answer some of these drawbacks.

20 (49)

Practical experiences

In this section, we describe practical experiences associated with fuzzing. We do this from

the viewpoint of a research group, whose purpose is to study, evaluate and develop

methods of implementing and testing application and system software in order to prevent,

discover and eliminate implementation level security vulnerabilities in a proactive fashion. To

do this, we have collaborated with industry by providing them with information on

vulnerabilities their products have, as well as tools, whereby they could find the

vulnerabilities themselves. Some collaboration efforts have lasted for several years, and the

companies have shared their internal experiences with us, which we summarize

(anonymously) here.

Initial response to fuzzing

By far, the biggest hurdle has been getting started. The first experience of fuzzing for many

companies is receiving an external bug report that includes a test case (possibly a stack

trace) that claims to be a security bug. There is no mechanism for easily verifying the bug or

finding the relevant developer based on the test case alone. Often, the severity of the bug is

downplayed – a working exploit would be required to treat the bug as critical. Eventually, the

bug is fixed and internal interest for fuzzing arises. We share experiences in using our tools

and demonstrate how we found the bug using them.

Tools, such as Radamsa, have been built to be as easy to use as possible. If the target

does not utilize files as input, a test harness and sample collection need to be implemented,

which can be a non-trivial task. This may sometimes prevent fuzzing from being used.

Running a fuzzer against code that has not been fuzzed before typically finds a large

number of bugs. With legacy code bases, even a quick run may find too many issues to

realistically fix in a reasonable amount of time. Going through the large number of bugs

requires significant effort from skilled personnel. Eventually, a business decision of fixing the

most obvious ones is made, and less critical ones are simply accepted.

Initial fuzzing runs may also uncover only a few bugs. This could be due to high code

quality, but also bad test coverage (e.g., due to test cases being dropped because of an

incorrect checksum, poor quality samples being used with a mutational fuzzer, the SUT

masking all exceptions or lack of instrumentation). Again, skilled personnel are needed to

ensure that testing was useful.

Automating fuzzing

After the initial results of fuzzing have been incorporated, the next hurdle is automating it

and making it a regular part of the software development process. An individual “fuzzing

expert” from the team or the SSG often builds the infrastructure. The automation is used for

a while, and eventually stops finding new bugs. The expert already has new tasks and the

infrastructure is eventually abandoned. In our experience, improving the fuzzer or sample

set, or simply recompiling with a memory-debugging tool, would continue to find bugs.

After the initial results of fuzzing have been incorporated, the next hurdle is automating it

and making it a regular part of the software development process. An individual “fuzzing

21 (49)

expert” from the team or the SSG often builds the infrastructure. The automation is used for

a while, and eventually stops finding new bugs. The expert already has new tasks and the

infrastructure is eventually abandoned. In our experience, improving the fuzzer or sample

set, or simply recompiling with a memory-debugging tool, would continue to find bugs.

Best practices

What has worked is placing fuzzing activities (automating the testing of some interface) on

the backlog. Fuzzing also can leverage infrastructure from other activities, e.g.,

- UI tests done with Selenium webdriver are used with a fuzzing proxy

- The team documents all new JSON API’s in a standardized way. API

documentation is automatically generated and fuzzed test cases are automatically

generated from the model

Agile methods require a “Definition of done”, a list of criteria that must be met before a task

is considered complete. Defining a number of test cases or the amount of time used for

fuzzing is a mandatory minimum, but does not ensure that testing is effective. Coverage-

based techniques can be used to finder areas that are not tested, but do not ensure

effective testing. However, in our experience, coverage-based sample set optimization

greatly increased the efficacy of mutation-based fuzzing.

Finally, the question of the economics of fuzzing and test automation is always relevant.

How much resources should be spent on fuzzing and when are we doing enough? What is

the opportunity cost of fuzzing, i.e., are would the effort spent on fuzzing be more productive

elsewhere? Is it worthwhile to do it in-house, or can it be externalized to a bug bounty

program or an external consultant?

We now present an example on how a very mature fuzzing process can be used to find

defects.

Example: Web browsers

Web browsers are the primary means of accessing Internet-based services. Their install

base is in the range of hundreds of millions and the market is shared by only a handful of

vendors. In the beginning browsers were primarily used for displaying static hypertext and

related images. Instead of being viewers of static data, current browsers are essentially

JavaScript-based programming environments, with support for processing many kinds of

data. To provide a seamless user experience, current browsers automatically download and

process nearly any data they are requested to fetch, as visualized previously in the threat

model in Figure 1. From a security perspective, this is a nightmare, since this combined with

the multitude of data formats supported in modern browsers makes the attack surface

enormous. The ease of injection of malicious data and homogenous environment makes

them a good target for malware, which combined with the evolving standards and growing

consumer expectations make securing browsers an unprecedented engineering challenge.

Sandboxing techniques are used to mitigate the effect of vulnerabilities, but this has merely

made exploitation more laborious - bypassing the sandbox, address space randomization

etc. is still possible, but may require chaining exploits for several bugs together.

22 (49)

Two major open-source browsers, Chromium (used as the basis for Google Chrome) and

Firefox are developed in an agile fashion, with major stable releases occurring every six

weeks. Web browsers are also one of the most fuzzed pieces of software, as browser

vendors have invested heavily in test automation and developed novel instrumentation

methods, such as AddressSanitizer. Also, vendor bug bounty programs and the wide install

base have attracted third party security researchers. These factors, and the public nature of

development make them an ideal case study for the use of fuzzing in test automation.

Browsers quickly gain new features as web standards evolve. The features first appear in

nightly builds. The most invasive and risky features are only enabled, for testing purposes,

when a special configuration flag is set. As trust increases in the feature (both functionality

and robustness), the feature is enabled by default and included in beta and release

versions.

With quickly evolving programs, like web browsers, problems occur with the development of

fuzzing test case generators. Generation based fuzz testing requires work and time, when

new features have to be researched and new generator grammars have to be developed.

With mutation based fuzzing the problem is finding sample files, at least when there is a

completely new feature and old samples cannot be recycled.

Because Chromium and Firefox are both open-source projects their test suites are publicly

available. As new standards are designed, both vendors start to develop new features to

conform to the standard. At the same time, they start to add new tests for that feature.

Individual tests in these test suites are commonly designed using a vendor specific design

model. With a simple conversion script, the individual tests can be converted to standalone

files that can be used with a mutation-based fuzzer when testing the new feature. New

vulnerabilities and bugs can be revealed from other browsers by samples derived from

another vendor’s test suite.

Our group participates in these efforts. Since our initial work in this area, finding new

vulnerabilities with the same methods has become increasingly more difficult. Increasing the

amount of used hardware has not significantly helped. Due to the efforts of both browser

vendors and the bug bounty hunter community the "low hanging fruits" have been picked

and we have to be smarter with our fuzzing efforts to reach the same results.

In 2010, we used blind mutation based fuzzing, with random samples downloaded from the

Internet, and easily found new bugs. In terms of browser features, most of these random

files are outdated. In practice this meant that our fuzzing efforts were directed towards the

testing of older features in browsers. These features were more likely to be already fuzzed

by browser vendor, or the bug-bounty hunter community. To be more effective in our

fuzzing, we needed to balance our fuzzing capabilities to cover the whole threat model of

the browser more evenly.

As a solution, we decided to use code coverage tools, like SanitizerCoverage, to preprocess

our sample corpus. Preprocessing minimizes redundancy from the sample corpus and thus

emphasizes samples that stress rarely seen features in the target. Preprocessing also

removes samples that use features that are either deprecated, or not yet implemented, in

the target. In practice this method has lead to the discovery of bugs in features like Google

23 (49)

Chrome's Content-Security-Policy(CSP). At that time only 0.002% of randomly collected

samples included CSP. Also, we found a vulnerability in Mozilla Firefox MP3 support (CVE-

2015-0825). At that time, MP3 was marked as an unsupported format in Firefox

documentation.

We also use runtime coverage analysis while fuzzing. Runtime code coverage analysis

allows our system to automatically collect interesting mutated cases and feed those back to

our fuzzing system for further mutating. This process allows our testing system to reach

code paths that would have been unreachable with our previous approaches.

We have now found over 110 security vulnerabilities (CVE number) in the stable versions of

the major web browsers. In addition, a similar number of vulnerabilities were found in pre-

release (unstable, beta) versions, but the vendor does not analyze the security impact as

heavily in these cases.

As another approach to add effectiveness to our fuzzing we targeted the fuzzing into

individual third-party libraries used in the browser. For example, these libraries include

parsers for different media formats. Direct fuzz testing of these libraries allows us to run

more test cases, in a given time, than we could run when testing the whole browser. Of

course, as a side effect we can miss some vulnerabilities that are not due to an error in the

library itself but in the way the browser handles the library. Hence, testing inside the browser

is also required. Using runtime code coverage analysis, when fuzzing third-party libraries,

allows us to collect a sample corpus that can be later used as a base for browser fuzzing.

Conclusions

This paper concludes that fuzzing can be integrated into agile software development and

test automation, but there are difficulties. The main challenge is that fuzzing needs to

continue to show value while requiring minimal effort.

The process used for testing Chromium demonstrates a very advanced way of utilizing

fuzzing, which is supplemented by a bug bounty program. Implementing similar

infrastructure is beyond most projects, but many activities can be done with limited

resources.

New features are added to the threat model, which in the case of web browsers is

essentially a list of new supported formats. The features are phased in gradually, and are

not enabled until they have been tested for both functionality and security. Finally,

comprehensive feature test suites are reused as models for model-based fuzzers or

samples for mutation-based ones. The quality is high enough that reasonably high bug

bounties can be paid to the vibrant community of external bounty hunters, while being

cheaper than in-house testing.

Fuzzing campaigns are not always successful. The greatest challenge is to firmly establish

fuzzing in the organization. The best way of doing this is for developers to constantly see

new, useful, results. This encourages further investment in testing, and reduces the risk of

the fuzzing campaign being a one-man effort that will eventually be abandoned.

24 (49)

The effectiveness of fuzzing depends on how well it is executed. This begins from data flow

based threat modelling, which should be continuously updated. Threat modelling should

also take results from previous fuzzing into account. If new issues are found with fuzzing,

the interface should be a candidate for increased fuzzing efforts. Even limited dumb fuzzing

with manual instrumentation can find some low-hanging fruit, and thus should be done for all

inputs of the system. The quality of third party components should also be considered.

To stay in use, fuzzing needs to be automated. Even then, the infrastructure will eventually

stop finding new bugs. Up to a point, improving test case generation (better models or

samples, adding new fuzzers) and instrumentation (use of new type of memory debugger,

custom test harness) will continue to find new bugs. Many of these activities only require a

small one-time cost, and are easily justified. Others require more significant efforts, including

the use of experts.

Coverage guided fuzzing is a promising field, and can improve the quality of fuzz test

campaigns. In addition, coverage provides insight into whether placing further effort into

improving the test campaign would be useful.

A key question is the availability of the skills required to setup an effective fuzz test

campaign. The Software Security Group is pivotal, but eventually testing will have to be

done by developers with the proper tools and skills. Setting up ways of working to make

fuzzing more effective is one way of doing this. This could be, e.g., standardized ways of

building instrumented builds and ways of leveraging results from other activities, like

automatically reusing API documentation as a model for fuzz tests.

Some basic skills are required from all development personnel. The fuzzing tools should

only require skills that the personnel have. Also, personnel need the skill of understanding

crash reports well enough to find the root cause of the bug.

The workflow used by fuzzing is somewhat different from traditional testing and this needs to

be accounted for. Instead of being an activity that responds to the previous development

increment, automated fuzzing is a background process that needs maintenance. Currently,

this requires some expert knowledge, but better tools could also fill this gap.

Coverage-based methods are an efficient method of improving the test case corpus, thus

improving test quality. Ideally, they would also make it possible to automatically direct

fuzzing efforts into areas, which have recently changed in the code. This would also serve

as evidence that the new functionality has been tested.

Further reading

Pietikäinen, P., Kettunen, A., & Röning, J. (2016) Steps Towards Fuzz Testing in Agile Test

Automation. International Journal of Secure Software Engineering. 7, 1 (January 2016), 38-

52.

Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: Brute force vulnerability discovery

Addison-Wesley Professional.

SAFECode. (2012). Practical security stories and security tasks for agile development

environments . Retrieved Sep. 24, 2015, from

http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

25 (49)

Takanen, A., Demott, J. D., & Miller, C. (2008). Fuzzing for software security testing and

quality assurance Artech House.

Zalewski, M. (2015). American fuzzy lop fuzzer. Retrieved April 28, 2017, from

http://lcamtuf.coredump.cx/afl/

26 (49)

Product security incident response team

Raino Lintulampi, Bittium Wireless.

Executive summary

This article introduces one approach how the security of a product’s software can be

monitored during the product’s life cycle. Product Security Incident Response Team (PSIRT)

is an organization whose responsibility is to proactively scan new vulnerabilities related to

the product software and react if those can be found. Vulnerability scanning is an important

part of PSIRT operation. A concrete example is presented how the vulnerability scanning

can be organized using a local copy of public CVE data bases and advanced reporting tool.

Introduction

All organizations are connected to the outside world using computer networks. Companies

and societies are depending on working communication networks. The security of the

communication is more important today than ever before. Several means are applied to

improve the security. Computers have anti-virus and malware detection software. Firewalls

protect companies’ networks; all connections are passed through proxies which makes it

easier to leverage organization level policies. Network traffic can be monitored with intrusion

detection system which alert if suspicious traffic is detected. There are administrative tools

that help information management personnel to check the status of computer software

versions and automatically install security patches.

New and even bigger challenge comes when different control systems including critical

infrastructure and autonomous machines are connected to large scale networks which can

be accessible from public internet and therefore being vulnerable for same kind of threats as

computer networks. An industrial site can have hundreds, even thousands of different types

of devices connected to industry network. Although accessing these devices is much harder

than computers in a computer network, it is still possible. Same kind of administrative tasks

are much harder to execute for industrial network than in typical computer network which

includes Windows machines and Linux servers, for example. Therefore it is crucial that all

the vendors follow good practices for building secure devices from the beginning. However,

when a product is integrated from hundreds of open source components, it is impossible to

test all the software components thoroughly. Therefore it is important that the known and

newly reported vulnerabilities for the software components are constantly scanned.

Definitions and benefits of having PSIRT organization

Product Security Incident Response Team (PSIRT) function resembles some of the

Computer Security Incident Response Team (CSIRT) functions. European Network and

information Security Agency (ENISA) has published several reports and guides how to

organize computer network security management. One is “A Step-by-step Approach on How

to Set-up CSIRT” which is followed and adapted in this article to PSIRT function.

27 (49)

One of the main responsibilities of CSIRT is to monitor the computers and machines

installed and used within the organization. CSIRT sees the software as black boxes, for

example Windows 7 SP2, Ubuntu Linux 14.04.2 or Firefox browser 50.01. CSIRT actively

monitors vulnerabilities reported to these system and applications and installs patches as

soon as vendors are providing them. PSIRT on the other hand is the organization of product

(embedded system, software application) vendor who monitors and solves security issues

found in the product. PSIRT works closely with the product’s maintenance and after sales

team who are responsible for finding the technical solutions.

A PSIRT is a team of experts who provides information of possible product security

vulnerabilities and/or threats to a product development team and a product maintenance

team. A PSIRT team may cooperate also with other teams in order to mitigate security risks.

One possible team to cooperate is Open Source Governance (OSG) team. When an open

source component is planned to be used in the product the open source licenses are

analyzed so that there are no licensing and commercial issues when using the component.

At this phase OSG can ask PSIRT to check that there are no security issues in the open

source component. If the licensing and security check are passed then the open source

component can be used in the product.

PSIRT has only internal customers when CSIRT may act internationally or nationally, and

may sell services to anyone asking of them. PSIRT focus is on company products and that

organization has the best knowledge of the products, or should be.

While CSIRT activity within information management team is a common task nowadays, a

separate PSIRT function is not necessarily that common at least as an independent

function. There are, however, several benefits to separate security issue handling from the

product development and maintenance:

- Each product team does not need to invent the new process for handling security

issues. All product teams benefit from the process improvements at the same time.

- There is one point of contact.

- Cooperation with other teams, for example IM CSIRT function and OSG, is easier.

- Search from common vulnerability and exploitation database requires exact search

terms. With wrong search, vulnerabilities may not be found or the number of false

positive findings increases which require extra work.

Possible PSIRT services

The actual services depend on the organization, the number of products and many other

issues. Table 1 lists some of the services which PSIRT could provide. The same

categorization is used as used for CSIRT in ENISA’s guide. Note that for example

Vulnerability analysis is a reactive service in CSIRT as in PSIRT it is a proactive service.

28 (49)

Table 1 PSIRT services

PSIRT Product

development and

maintenance

Reactive services Proactive services Quality and

education

Incident handling Vulnerability

analysis

Awareness building Incident analysis

 Alerts and warnings Education/training Vulnerability

handling

 Development of

security tools

 Vulnerability

response

 Technology watch

There is a shift from Reactive Services to Proactive Services in PSIRT services compared to

CSIRT. This is natural because the PSIRT function is part of vendor’s operation and it

focuses on products and not on monitoring computer network. PSIRT function can also be

seen as part of product’s quality assurance.

The only reactive service is incident handling. Incident means that either a customer or for

example a security organization has found a vulnerability in the product which has been or

can be exploited. Incident handling must be started immediately – in PSIRT operation that

means the next working day earliest – and before that the relevant information must be

gathered from the customer. The customer’s CSIRT organization is responsible for the

immediate damage control. They may isolate sections of the network, filter the network

traffic or shutdown the devices which are affected or threatened by intruder or malware

activity. CSIRT is also responsible for gathering the artifact information and possible forensic

evidence. Artifact information is delivered to the product vendor. Depending on the products,

the malware, virus or threat may be targeted directly to the product or it may have been

affected due to malfunction in other device in the network, for example a firewall or a server.

This information is needed when an incident analysis is done. The analysis includes the

verification of suspected vulnerabilities and the technical examination of the hardware or

software vulnerability to determine where it is located and how it was or can be exploited.

Because the analysis most likely includes reviewing source code and even debugging the

code, it can be done only by people familiar with the product. Before the vulnerability can be

verified the incident has to be reproduced on a test system. It affects prioritization and

response dead line. If the root cause is not in the product then corrective actions can be

postponed to the next scheduled software update. But if the product is critical part of the

network then the response must be done as soon as possible. The response may include

patches, fixes, and workarounds. If the vulnerability has been exploited and it is in a critical

device then it is important to notify other customers as well. The main point of PSIRT

function is to avoid this kind of situation; however, incidents can happen because no

process is perfect. Therefore the open communication is crucial between the PSIRT and

CSIRT because it shows that the vendor’s quality assurance in general and specifically the

PSIRT functions have not succeeded.

The most important proactive service is vulnerability analysis. That means that the

vulnerabilities of the components in the product are scanned. This involves two parts. The

first part is doing security testing of component interfaces. Fuzzy testing which was

29 (49)

described in Chapter Utilizing Fuzz Testing in Agile Test Automation is a powerful tool for

that. Security testing is an R&D phase operation and it is not executed any more after the

product release.

Because a product may include hundreds of (open source) components, only critical

interface components can be thoroughly tested. Also no test can find all the code flaws or

vulnerabilities. Therefore known and newly reported vulnerabilities for the components must

be constantly scanned. That is an operation which has to be carried out from R&D phase

until to the product’s end of life. Chapter Setting up product vulnerability checking describes

one solution how vulnerabilities can be scanned. Vulnerabilities found in normal product

vulnerability scanning are further handled, analyzed and if needed corrected by the product

development or maintenance organization.

PSIRT can be a source for vulnerability report to CSIRT of its customer organization. One

should also notice the difference in focus. CSIRT sees the product as black box, PSIRT

sees the product as white box and it checks vulnerabilities of the software components from

which the product is built, therefore, PSIRT may check vulnerabilities for thousands of items

for one product.

PSIRT may also act as a coordinator for developing, evaluating and maintaining security

related tools which are commonly used in an organization. Vulnerability scanning tool

described is an obvious example but also fuzzy testing tools and static scanners may be

evaluated by PSIRT.

PSIRT function can be seen as part of the quality assurance process. Training and

awareness building can be defined also as a goal for PSIRT.

There is also a difference in how CSIRT and PSIRT should respond to the found incident or

vulnerability. Because PSIRT is responsible for securing the product, the immediate actions

are on the responsibility of the CSIRT. Furthermore, the corrective actions are not like

shutting down of network sections or a computer which has a malware, but the product

software itself has to be changed. Therefore if organization’s CSIRT is 24/7 activity, PSIRT

is the office hour activity because it is not likely that code debugging can be started e.g. on

Saturday night. On the contrary, because the corrective action is the patch for the product

software, then it has to be done and tested thoroughly. However, it could be reasonable to

describe the process in Service Level Agreement how the corrective actions are taken. For

example, the analysis of the product component vulnerability is started within two working

days. Confirmed vulnerabilities are corrected within 30 working days and patches are

delivered to customers within 5 working days after the patch is approved. Depending on

whether the vulnerability was detected in normal proactive process or was it reported as an

incident, the processing times could vary. Depending on the product and number of

installation base several patches may be combined together.

Communications towards customers differ as described in Table 2. It is not necessary to

inform consumers about the vulnerabilities which have not been corrected. That information

would go public and if the vulnerability has not been exploited yet, after that it would be

definitely exploited by hackers. Therefore security updates are reasonable way to

30 (49)

communicate with consumers. Devices contact (when allowed) to the vendor’s software

update servers and download new software versions there.

In business to business relationship the situation is different. The more critical the product is

the more important is the open communication. The customer may even require that any

detected vulnerability is informed to them at the time it is detected. Anyway it could be a

good idea to open the process also to the customers so they would understand how their

vendor handles security issues. That increases trust and may even be competitive

advantage.

Table 2 Communication options to different customer types

Customer type Communication means

Consumer Security patches

B2B Customers PSIRT process description

Service agreement including patches

Security critical customer PSIRT process description

Vulnerability reports

Service agreement including patches

However, when devices are part of critical infrastructure, they cannot communicate via

internet with any update servers. The vendor has to agree in Service Level Agreement how

security patches are delivered and how they can be updated if needed. With a typical B2B

customer that is handled between the vendor after sales / product maintenance organization

and the customer’s service organization and PSIRT is not involved in the software update

process. Although the vendor has corrected some security vulnerabilities and delivered

them, the customer may not want to install the patch because of ‘do not correct it if it is

working’ attitude. That may be a reasonable decision. If the customer, however, requires

vulnerability report when that is detected, then the communication happens between the

PSIRT and the customer CSIRT organizations as described in Figure 10. It has to be agreed

clearly how the communication is done and how it is secured. No security information can be

sent in clear text. PSIRT may also have to report how the vulnerability has been processed

in the vendor’s organization. This can be done in a same way as vulnerability reporting or

alternatively CSIRT may have a limited view to PSIRT’s ticket processing system.

PSIRT organization

There is not only one way to organize PSIRT activity but it depends on several issues. One

thing is, however, common to all solutions. The organization has to define what PSIRT does.

PSIRT operation creates costs. Costs may come from new tools and equipment and from

personnel cost. How small the operation is still someone needs to do something and that

needs money. However, the overall cost may be less than with the current operation but

usually organization sees all new functions as an additional cost. Therefore there has to be

clear mission statement what the new function – PSIRT – does and delivers. Here is an

example statement:

PSIRT ensures that our customers have secure products until the product’s end of

life.

31 (49)

Figure 10 Communication between the product vendor and the customer

The above statement sounds quite good. However, it is also quite wide. The product life
cycle includes the product development and maintenance. Is it PSIRT’s responsibility to
make security testing of the product during an R&D phase? Are security related errors
different than other errors? If the mission statement is taken literally, these are the questions
which should be answered. The mission statement leads easily to a horizontal PSIRT
organization as described in Figure 11. This may be too complex structure to start PSIRT
activity. A simpler approach may be a better starting point.

Figure 11 A horizontal PSIRT organization

An example of a simpler mission is:

PSIRT provides information and training about security vulnerabilities to product
teams.

This statement is concrete but at the same time expandable in a way that it allows adding
new functions to PSIRT based on the experiences. The starting point of this kind PSIRT
could be an activity that first focuses on providing product related vulnerability information to
products’ maintenance team and administrating the vulnerability scanning tool as depicted in

Service &
maintenance

CSIRT

Product A

Product B

Product C

PSIRT

R&D

OSG
Customer Vendor

After sales

R&D After sales

Product
A

Product
B

IM Q&A

PSIRT

Error
fixing

SW
updates

T
e
s
t
i
n
g

32 (49)

Figure 12. PSIRT is just an information sharing entity. What happens to the vulnerability
reported by PSIRT is out of the scope of PSIRT’s responsibility. Communication and
delivering the patches to customers is not visible to PSIRT.

Figure 12 Information sharing PSIRT

Later PSIRT may also evaluate and maintain security testing tools used at R&D phase
including training. Next step could be to establish a communication channel between PSIRT
and customer’s CSIRT. That case was elaborated in Figure 12. Eventually the PSIRT
organization may become very close to the one presented in Figure 11. It is questionable
whether product maintenance activities should be included in PSIRT because the patching
the product software requires always a deep understanding of the code. Good
communication is needed between the teams to ensure that the product’s security is kept
constantly at the highest level.

In next chapter it is described how the product software vulnerability scanning can be done
automatically.

Setting up product vulnerability checking

Introduction

Checking of software vulnerabilities is an important part of software development and
maintenance. It is a fundamental part of PSIRT operation as described in the previous
chapter. Vulnerability scanning is not a one shot activity but it has to be done on regular
basis because new vulnerabilities may be found at any time. At a development phase it is
important to check that a new software component, which is planned to be used, does not
contain such vulnerabilities which prevent the use of the component in the product. In case
of an open source component the initial vulnerability analysis may be done as part of open
source governance when also open source licenses are checked. After that the software
components should be checked constantly.

CVE-search

For vulnerability scanning the access to the vulnerability database is mandatory. There are
several public Common Vulnerability and Exposure (CVE) databases like
http://cve.mitre.org, https://web.nvd.nist.gov/view/vuln/search, https://www.exploit-db.com/
and https://www.circl.lu/services/cve-search/. There are also product specific databases as
WindRiver’s https://www.windriver.com/security/cve/main.php and non-public commercial
database as Risk Based Security‘s https://www.riskbasedsecurity.com/vulndb/. Because
security is everyone’s concern, the basic CVE databases are public and common for all

Product A

Product B

Product C

PSIRT

R&D

OSG

After sales

CVEs

SW-BOM CVEs

CVE

Makefile

Component
name

33 (49)

database providers. However, there are slight differences how data is presented. For
example Mitre and NVD has a very close relation. Mitre feeds the CVE list to the U.S.
National Vulnerability Database (NVD), which then provides upon the information included in
CVE entries enhanced information for each CVE Identifier such as fix information, severity
scores, and impact ratings. NVD also provides advanced searching features such as search
by individual CVE ID; by OS; by vendor name, product name, and/or version number; and
by vulnerability type, severity, related exploit range, and impact.

Although public CVE databases can be accessed directly, it may expose critical information
if the access is used to query information related for the product software. If the queries are
monitored then a listener can get the information about the software components used in the
product and possible uncovered vulnerabilities which can be utilized on targeted attacks.
The better approach is to setup and maintain a local CVE database from which the product
specific CVE searches are done.

Cve-search (https://github.com/cve-search/cve-search) is a tool to copy CVE information
from multiple sources and perform local searches for known vulnerabilities. Cve-search is
copyrighted by Wim Remes, Alexandre Dulaunoy and Pieter-Jan Moreels and is available
under BSD-3-Clause license. The tool uses MongoDB to which data from different CVE and
security databases is copied. Database handling and search tools are implemented in
Python3. The main source for CVE data is NIST NVD database but information is also
queried from Exploitation reference from D2 Elliot Web Exploitation Framework
(www.d2sec.com) and MITRE Reference Key/Maps and Offensive Security’s sponsored
Exploit Database.

Cve-search has a minimal web interface for searches as depicted in Figure 13 and Figure

14, but it does not offer as versatile features as for example NVD search interface. However,
the main functionality of Cve-search is not the web interface but possibility to update the
local database regularly and make easily command line searches from it which can be
executed from scripts and then post-processed with different tools.

Figure 13 Cve-search main web view

34 (49)

Figure 14 CVE details shown, partial view

An example of command line search is described below with clear text output.

$ search.py –p openssl:openssl:1.0.2h
CVE : CVE-2016-2177
DATE : 2016-06-19T21:59:02.087-04:00
CVSS : 7.5
OpenSSL through 1.0.2h incorrectly uses pointer arithmetic for heap-
buffer boundary checks, which might allow remote attackers to cause
a denial of service (integer overflow and application crash) or
possibly have unspecified other impact by leveraging unexpected
malloc behavior, related to s3_srvr.c, ssl_sess.c, and t1_lib.c.

References:

.cut.
cpe:2.3:a:openssl:openssl:1.0.2h

Output of the search can be stored in text, xml, json or html format. The content of the
specific CVE ID can be searched as well. Also free text searches are possible.

The next chapters describe how Cve-search features can be utilized in product vulnerability
tracking process and what should be considered in such a process.

35 (49)

CVE database

Figure 15 depicts how vulnerability scanning can be built as part of PSIRT function. PSIRT
function in this scenario is the same as described in Figure 12 and PSIRT just provides CVE
information to its local customers.

Figure 15 Vulnerability scanning framework

The key point is the local copy of public CVE databases to which CVE data is collected from
public sources using Cve-search program and from which local queries can be executed.

CVE DB copy should be updated every day. Typically the number of new vulnerabilities
added to the data base is from few tens to couple of hundreds each day. LVE DB (Local
Vulnerability and Exposure data base) is a special data base used only by a company itself.
If open source components are tested for example using fuzzy testing tools, new and not
publicly known vulnerabilities may be found. It is a good practice to report findings to the
upstream project; however that is not always possible for example if the project is not active
any more. Also there may be a significant delay before the reported vulnerability has been
corrected and reported to the public CVE data bases. Therefore the error reports can be
stored to the special LVE data base in a format which Cve-search can read. Now all locally
reported security issues are copied to the CVE data base copy and they are visible in future
CVE search for the component. LVE data base is important for the large organizations with
number of products because it is very difficult to know who is using the component and
hence who should be reported about the findings.

A product related CVE queries are executed from the script file which is automatically
generated using a product’s software information and CVE knowledge data. Software
information is described in a XML file which contains a component name and version, see
Figure 16.

NIST NVD

CVE DB copy

Build manifest

CVE
knowledge
data

SW version
data

CVE
query

CVE results

Release
manager

Tool admin

check

update

PSIRT
Team

email

D2sec.com ExploitDB

Jira

Product 1
CVE
reporting

Product N

Product
Team

cve-search

CyberTrust result

internet

intra

LVE DB

36 (49)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SWversions>
 <SWcomponent>
 <Name>kernel</Name>
 <Version>3.4.0</Version>
 </SWcomponent>
 <SWcomponent>
 <Name>btconfig</Name>
 <Version>2.10</Version>
 </SWcomponent>
 <SWcomponent>
 <Name>busybox</Name>
 <Version>1.22.1</Version>
 </SWcomponent>
</SWversions>

Figure 16 Product software’s version information

A second input for the CVE script generator is the CVE knowledge data. It is not always
obvious how the software component is named in the CVE data base and therefore what is
the correct query term. If a wrong search term is used then critical vulnerability information
may be missed or the search gives a large number of false positive results which causes
unnecessary extra work. CVE knowledge data includes the information for the query and
how the version numbers should be interpreted, see Figure 17. Digits field defines how
many digits of the component version number are used in the CVE query. Some cases
patch level information – digit 3 – is not used in reported vulnerabilities and if 3 digits version
number is used in a search no vulnerabilities are found which may miss again the critical
information. When a new component is added to a product then the component query terms
are manually checked and the CVE knowledge data is updated if needed.

<SWcomponent>
 <Name>curl</Name>
 <CVElink>haxx:curl</CVElink>
 <Digits>2</Digits>
 <Status>Checked</Status>
</SWcomponent>
<SWcomponent>
 <Name>expat</Name>
 <CVElink>libexpat:expat</CVElink>
 <Status>Checked</Status>
</SWcomponent>

Figure 17 Example of CVE knowledge data

Execution of the generated CVE query script can be scheduled for example using cron on a

wanted interval. Depending how critical the product is, the query can be done daily, in not

critical product case the CVE query can be done only weekly basis. Because the queries are

fully automatic there is no harm to do that on daily basis. On the contrary, then processing of

a possible new critical vulnerability can be started without a delay. The CVE query script

fetches all the product related CVE information from the CVE data base copy. The structure

of the fetched CVE data is presented in Figure 18. The data consists of two parts; data

describes all the vulnerabilities found in the data base, diff-to-previous-data describes only

the new or updated vulnerabilities. The latter information is generated by the CVE reporting

tool that is activated after CVE query which fills the data information.

37 (49)

Figure 18 CVE results structure

CVE reporting tool checks if there are new CVEs or if earlier CVEs have been updated. Only

those CVEs that are above a predefined CVSS criterial are reported and either a Jira issue

is generated or an email is sent or both. Depending on the organization and product

structures the CVE reports can be sent to PSIRT team or directly to a product maintenance

team. Jira or similar tools like Bugzilla are a preferable solution for reporting because they

make it easier to keep a track how vulnerability has been handled. If needed an Excel report

can be generated from the detected CVE results.

CVE reporting has few configuration options as described in Figure 19. Mails section

defines to whom the indication of CVE findings is sent. It is possible to generate

automatically a Jira issue about the finding. In that case a special email address needs to be

defined in Jira which is added to <to/> field. In this case a person in <cc/> field is

automatically assigned as a responsible person for the issue. <Product/> field defines

the product for which the found CVEs are related. Product_name is added to email's

subject field. <cvvs/> field defines the criteria for indicating the CVE finding. Only findings

whose CVSS are equal or greater than value in <cvvs/> field are reported. CVSS can

have a numeric value between 0 and 10.

CVE server name is the first choice to find out the database location. If it is omitted then IP

address is used. If debug option is enabled then mails are generated but they are not sent

but printed to a console. That is a good option for testing before spamming a product team

with possible hundreds of mails if settings are incorrect.

<configurations>

 <product>Product_name</product>

 <cvss>5</cvss>

 <mails>

 <to>

 <mail>rock.bar@company.com</mail>

 <mail>blues.bar@company.com</mail>

 </to>

 <cc>

 <mail>jazz.bar@company.com</mail>

 </cc>

 <bcc>

Product ID

CVE

YYYY-MM-DD1 YYYY-MM-DD1 YYYY-MM-DD1

data Diff-to-previous-data data Diff-to-previous-data data Diff-to-previous-data

scripts

38 (49)

 <mail>foo.bar@company.com</mail>

 </bcc>

 </mails>

 <cveServer>

 <name>cve.intra.company.com</name>

 <address>192.168.1.10</address>

 </cveServer>

 <debug enabled='yes'>john.developer@company.com</debug>

</configurations>

Figure 19 CVE reporting configuration

Conclusions

Product security is not something which is built into the product during the development and

then forgotten. Especially today when the software is built from hundreds of open source

components it is impossible to verify thoroughly all the components. Therefore the

vulnerabilities should be monitored constantly. That is an important function of Product

Security Incident Response Team (PSIRT) which was introduced in this article. There are no

strict guidelines how the organization should organize PSIRT. It depends on the number of

products, company size and many other things. A solution for vulnerability scanning was

introduced. The presented framework was developed in the Cyber Trust program and it has

been successfully used in Bittium. However, not all open source projects report formally the

security flaws found in the project as CVEs. Many security errors are corrected and the track

for that can be found only in the changelog or version control system’s commit comments.

That problem was studied at The University of Oulu but further research is still needed.

Further reading

A step-by-step approach on how to set up a CSIRT, Deliverable WP2006/5.1(CERT-D1/D2),

ENISA. (https://www.enisa.europa.eu/publications/csirt-setting-up-guide)

Moira West Brown, Don Stikvoort, Klaus-Peter Kossakowski, Georgia Killcrece, Robin

Ruefle, Mark Zajicek, Handbook for Computer Security Incident Response Teams (CSIRTs),

(http://www.cert.org/archive/pdf/csirt-handbook.pdf)

39 (49)

Device Management by 2020

Tero Takalo, Capricode

Executive Summary

Nowadays MDM technology is dominated by main mobile platform/OS providers Apple and

Google who have strong guidance of what can and what cannot be done by MDM. Also few

large players such as VMware (with Airwatch), MobileIron, IBM (with Fiberlink) and Microsoft

have dominant market positions leaving room only for SME target markets. This means that

in future we see room for specialization in MDM (e.g. secure Android manufacturers for

special markets) and on the other hand large growth potential in IoT markets to make growth

of MDM players possible if they are willing to make customization and have flexibility to

adapt to customer needs. The main market in IoT is not in enterprise usage as in traditional

MDM but in OEM device manufacturer needs which mean that needs for functionality,

scalability and cyber security are on totally different level than in traditional MDM.

Introduction

MDM has become a commodity rather than a special system. Large players like Microsoft

(Intune) and IBM (MaaS360) offer some scale of device management functionalities as side

products in their other offering making it difficult to other MDM system provider to get into

their existing customers.

OS fragmentation is no longer an issue as Android and iOS dominate in markets. Instead

the challenge comes from Android version and OEM (original equipment manufacturer)

fragmentation and different implementations of the features or support for different features.

In addition to OEM fragmentation in general, many OEM’s have made additions to basic OS

MDM functionalities. Samsung (Knox) and HTC have been the most active OEMs.

Supporting vendor specific additions vary a lot among MDM vendors.

Compared to earlier needs for MDM for setup, backup and application provisioning, the main

need nowadays is in increasing security rather than enhancing employee satisfaction. This

is due to evolution of mobile platforms which provide standard solutions for example backup,

and user friendliness in the setup of e.g. email where the user no longer needs to have

technical expertise. Instead of MDM device side functionalities the evolvement and

differentiation of the MDM solution is related to wider Enterprise Mobility Management

(EMM) aspects in the backend; for large enterprises there is need for other system

integration, application management, content management, identity management and

master data management. However, the need for these functionalities depend highly on the

enterprise size and IT systems and IT management technology level.

EMM is mainly a systematic IT process for defining tool chain and policies required for

properly manage and secure mobile device fleets of the company. The evolution BYOD

(Bring Your Own Device) instead of (limited) variety of company provided devices has

brought a new aspect to MDM. Despite of the need for MDM solutions the predicted high

40 (49)

growth presented by Gartner and other market research companies for MDM has never

been a reality. The market growth has been rather slow evolution than a large revolution.

Mobile Device Management future - from mobile devices to IoT

Digitalization and cyber security trends will continue and form basis also for the device

management needs and evolution. Everything will be connected, all data is analyzed and

cyber security awareness brings market growth possibilities for device management

products. Product life cycle and window of opportunity for growth is all the time shorter and

all markets are global.

In emergence of IoT one important issue to consider is who will take the responsibility for

IoT devices. In case of company using IoT as part of their process (e.g. factory) the answer

is quite obvious that IT department, that manages also all other devices, takes responsibility

over IoT as well. In a case where the IoT enables new business via digitalization the

business unit could take responsibility directly. Usually this is done utilizing a separate

innovation department in the research and development organization or Operational

Technology (OT) organization.

In the past, Information Technology (IT) and Operational Technology (OT) were seen as two

distinct domains of a business. The former focused on all technologies that were necessary

to manage the processing of information, whereas the latter supported the devices, sensors

and software that were necessary for physical value creation and manufacturing processes.

One of the factors that is reshaping IoT market is the convergence of Information

Technology and Operational Technology which is basically a “must have” in order to scale to

IoT vision device amounts and to keep security at proper level.

Convergence of networks - both industrial (OT) and enterprise (IT) are enabling applications

such as video surveillance, smart meters, asset/package tracking, fleet management, digital

health monitors and a host of other next-generation connected services.

In case of equipment manufacturer (OEM) to make IoT enabled devices (e.g. RFID readers

or mining machines) the answer to responsible organization is even more obvious and

business unit OT and/or innovation department must be in control of the R&D of

management environment and other tools needed for keeping device fleet updated and

secure.

The number of IoT devices will grow extremely fast, although estimations for speed of that

growth vary a lot. Figure 20 illustrates GSMA organization estimation for cellular network

connected device number:

41 (49)

Figure 20 Estimation of growth of connected devices

Emergence of IoT brings a few new challenges:

1. Scalability: need to handle much larger number of devices in the system.

Example: an organization of 1000 employees needs about 1000 devices to MDM

system for handling employee smart phones. But the same organization might be

handling fleet of 10 million remote readable electricity meters, meaning that IoT

device management systems must be able to scale to 10 million devices compared

to 1000 of MDM.

2. No human interaction. All actions and processes in a device starts from an initial

discovery and enrollment needs to happen without a human interaction as the IoT

devices generally do not contain any user interface and on the other hand the

scalability cannot be realized if a human action is needed in the process for each

device.

3. Standards: Standardization activities are too slow to properly address the

challenges of IoT expansion. This has resulted in forming of different (and

competing) alliances in the connectivity, protocols and other technical items in

device-to-device and device-to-cloud communication. Here are few examples of

different alliances:

- Industrial Internet Consortium

- Open Interconnect Consortium

42 (49)

- AllSeen Alliance

- Thread Group

- IPSO Alliance

- IoT Eclipse

- OneM2M

- Bluetooth SIG

- Internet of Things Consortium

- LoRa Alliance

4. IoT platforms: Market analysts have counted over 700 commercial IoT platforms

which mean that the whole landscape of the IoT platforms is very scattered. From

device management perspective the DM system needs to be able to integrate well

to the platform and bring extended / advanced functionality, automation and other

aspects over the standard device management functionalities of the platform.

From commodization to specialization

Current general MDM and other enterprise systems will continue in that role. In addition to

those there will be emergence of niche markets for specialized / customized MDM solutions

for special organizations product purposes (e.g. security organizations, governmental

organizations, army, high security enterprises) that need tighter management / control

features than available by general solutions.

Second track in this specialization is emergence of secure smart phone manufacturers (such

as Bittium, Gryphon, Airbus, etc.). They provide whole solutions usually built on tweaked

Android OS and that gives possibilities to make advanced features also in MDM systems.

Third track in new markets and customization needs is IoT systems. Since IoT in general is

still missing standard interfaces, protocols, etc. for making generic device management

systems possible, it will be still many years from now that any and all IoT device

management will need some level of custom adaptation in device level and custom

integrations in the backend systems.

Technical requirement trends

The specialization / customization will bring new technical requirements. Some of the

requirements are related to device / backend functionalities but there are also many

requirements for protocols, networking and OS support as well.

New MDM functionalities needed in near future, especially in high security use cases, are for

example:

- Advanced monitoring / diagnostics

- Fetching / parsing log files from devices

- Firmware updates

- Application revocation

- Application and process whitelisting

- Stronger authentication / identification of devices

- Stronger overall control over devices

- Advanced admin user rights control

- Advanced automation in device enrollment

43 (49)

A list of needed new technologies, especially in IoT, are for example:

- New communication methods support such as Sigfox, LoRa, Wirepas, Kaltiot

- New protocols support such as MQTT, NGTP, SNMP, CoAP, LWM2M

- Multihop (connect via mobile phone Bluetooth to sensor, etc.)

Major technological development needs to be done in scalability of MDM systems in order to

address vast IoT device amounts (environments that consist of millions of managed

devices). Earlier MDM systems were not meant for real time operations, transferring large

data files (e.g. firmware updates) or in general able to scale up to millions of devices either

due to limits in backend scalability or lack of automation.

Cyber Security

In cyber security the main question is: who is responsible of the security? Is it company’s IT

department, end user, device manufacturer or some public organization? Or can

responsibility be “outsourced” to 3
rd

 parties? Responsibility question is not limited only to

organizations but should be considered also from private person/property perspective as

well. Consensus in responsibility questions must be found and connect that to technical

practicalities and tool chain, many of those have link to device management system

requirements.

A study by HP in 2014[1] showed that 70 percent of IoT devices contain serious

vulnerabilities. There is undeniable evidence that the dependence on interconnected

technology is defeating the ability to secure it. The situation has become even worse since

the study because due to expansion of installed devices the number of vulnerable devices

increases even in case when the percentage of vulnerable devices in new devices would be

lower than in the study. It is expected that number of exploits and vulnerabilities will continue

rising as it has been during past few years. Especially as IoT is still so early in its evolution

and legacy M2M systems, routers, etc. internet connected devices having strong legacy of

neglecting security by default there is huge amount of work to be done before reaching even

some satisfying level of security.

Making devices secure and safe is one of most important needs for device management

systems. Just by ensuring correct settings and setup, and keeping firmware updated

improves cyber security to quite good level even without any advanced threat protection or

monitoring. However, this is true only against mass exploits and botnet attacks that target to

manufacturer default settings or known vulnerabilities. Mirai botnet is a good (or bad)

example as it has been able to collect the largest botnet ever just by targeting to devices

which have a simple protection (e.g. “root / root” credentials) and management console or

root access ports available to internet.

Life cycle management of devices is one very large problem both in mobile and IoT

domains. Device manufacturers are willing to make updates to their devices only for a short

period after reaching end of production. This support period is a lot shorter than average

lifetime of devices, making devices vulnerable for a long period of time before their use has

deceased. Another issue in security updates is that even if OEM produces updates, in many

cases they are not updated to devices as the clear responsibility of security is missing in

organizations.

44 (49)

A practical example of life cycle management is the known heartbleed vulnerability in the

OpenSSL library. Most of the older Android mobile phones only support OpenSSL versions

which have the vulnerability and the corrective update is not available from OEM’s. Still

these devices can be widely used and organizations want to keep them in MDM system.

However, Android platform MDM client available in Google Play may not support any more

those devices because the MDM client should also include the vulnerable OpenSSL library

and such applications have been rejected by Google.

Zero day vulnerabilities are another issue to be considered. It is not possible to directly

protect against this kind of ”unknown” threats but instead the monitoring systems and

algorithms should be at such a good level that they bring preventative protection and

detection possible also against zero day exploits as well as possible. Currently this kind of

monitoring and preventative protection is at some level only in standardized intranet

environments, not in internet connection level. However, some proactive means can be

introduced to the MDM to increase security also against zero day vulnerability:

- Strong authentication keys

- Device applications / processes monitoring

- Application whitelisting (only allowed applications can run)

- Device physical configuration monitoring (e.g. USB ports)

- Connectivity and data transfer monitoring

- Internet connections security enforcement (e.g. only VPN connections allowed)

- Antivirus and other advanced threat protection applications

- Data encryption

- Network isolation / firewalls

- Connectivity monitoring

- Network anomaly detection

- Device recognition / monitoring

- Limit device operation / connectivity to certain physical location

- Network data transfer monitoring

- Network level antivirus scanning

- Forced RSA / strong key pair authentication

- Certificate based connections

- Forced data encryption

- Location / time based access rights to systems

- Proper Master Data Management

One extremely important aspect in cyber security is identification of the devices and users.

The ID management system needs close integration to device management and also the

technical means for authentication need to be at proper level, meaning use of device

specific certificates. Provisioning methods and especially addressing the automation

introduces challenges for proper scaling, security and avoiding “chicken and egg”

syndromes in authentication and enrollment.

Also evolution of distributed ledger and block chain technologies for identity management

will bring means for ensuring security in authentication and communication security in both

cloud-to-device and device-to-device communication.

45 (49)

The Open Web Application Security Project’s (OWASP) Internet of Things Top 10 Project

aims to educate users on the main facets of IoT security and help vendors make common

appliances and gadgets network- and Internet-accessible. The project walks through the top

10 security problems that are seen with IoT devices and discusses how to prevent them.

These types of projects are just the beginning of the future security standards that must be

developed to create a network of devices that benefits users in a secure environment. Many

of these items can be taken into much better level with help of advanced device

management system. The Top 10 Project items are:

1. Insecure Web interface

2. Insufficient authentication or authorization

3. Insecure network services

4. Lack of transport encryption

5. Privacy concerns

6. Insecure cloud interface

7. Insecure mobile interface

8. Insufficient security configuration

9. Insecure software or firmware

10. Poor physical security

Automation

The IoT scenario “everything will be connected” means that even in home environments (not

to mention offices, logistics, factories, etc.) there will be a tremendous need for device

management but on the other hand scaling into that kind of multi-device / multi-platform /

multi-form factor environments cannot happen if there is not intelligent learning, strong

automation and other methods used for making the whole process of management

automated.

In current management systems customization and adaptation are needed to each new

device and platform type. That alone brings major roadblock in the speed and ability to

adapt to changing environments.

Machine learning and artificial intelligence connected to device management tasks

automation and administration alert systems will be mandatory in order to make proper

management of large and heteronomous systems possible. This field is going to need a lot

of research activities and standardization before it can be taken under proper development

activities for device management systems.

New functionalities in device management system is needed for monitoring and fetching and

parsing log data and other information from target devices in order to make automated smart

alerting and faster reaction or preventive actions to possible problems in field operations,

especially in IoT but also in enhanced security mobile terminals.

Integration

MDM/EMM systems are often necessary needed to integrate with other backend systems

rather than run MDM as a standalone system. The backend system includes for example ID

management, master data management, document systems, application management, and

billing systems. In evolution of device management to IoT the need for integration will be

46 (49)

even greater as there are many more systems to integrate to, for example IoT platform,

ERP, CRM, data analysis systems. Also in IoT the integration is tighter and in many cases

the device management system needs to be controlled entirely from other systems.

IoT systems in general consist of multiple separate parts as depicted in Figure 21:

Figure 21 IoT integration view

There is a common understanding within the IoT industry that developing industry solutions

need proper collaboration between the stake holders. Example of such collaboration is

SuperIoT alliance (http://www.superiot.fi/the-process) started in Oulu. There are a lot of gaps

still existing before IoT can be in mainstream [2].

Commercial aspects

Market size for MDM systems will continue to grow slowly, mainly due to mobile device

security needs of enterprises. IoT device management market has a huge growth potential

in upcoming years in different market verticals. The uncertainty in that market is related to

whether large IoT platform vendors like IBM, Amazon, Microsoft or ThingWorx will include

device management functionalities as standard components in their platforms. From IoT

platform perspective the device management is infrastructure and not as fancy as the data

analysis and business intelligence which may lower the interest to develop such systems.

An estimation of the IoT market segments is presented in Figure 22.

47 (49)

Figure 22 IoT market segments by SAS Software

In general, any device management system provider will need much more flexibility in

business models than in the past. Especially in IoT there is also need to productize

customization process and service and consultation services. It can be also predicted that

generic MDM system license price erosion will continue. Customized (hardened) mobile

device management solutions will keep reasonable license prices but size and evolvement

of that market is currently unknown. IoT device management license prices per device will

be also very low due to very large device quantities. In smaller device systems the device

management solution itself will have some price tag rather than per device licenses.

Conclusion

Main items in future device management systems are related to scaling, customization,

flexibility and integrations of the device management system. Main need and growth in

device management business will be in IoT due to automation and cyber security needs in

that field.

Cyber Security is one of main concerns and major roadblock for vast expansion in amount of

connected devices. Security and IoT evolution will need standardization, alliances, good co-

operation capabilities and close integration between different technology providers.

Evolution in enterprise device management will divide to large enterprise EMM needs and

small and medium enterprise basic MDM needs. Organization needs are also divided into

48 (49)

basic security level needs and advanced security needs as for example in governmental

organizations.

Another issue to be considered in future as IoT devices are adopted to organizations and

proper responsibilities is how security and management is defined properly over whole life

cycle of devices.

IoT and other connected device manufacturers will need proper and customizable device

management tools for monitoring and updating their device fleets as well as keeping cyber

security of the devices at acceptable level.

In technology perspective most development and evolution is needed in following areas:

scaling, new communication channels/protocols, automation, intelligent/learning systems,

authentication and cyber security in general.

Majority of these items are standard development activities for device management tools but

especially interoperability and intelligent automation will need advanced research activities,

standardization and new innovations like block chain utilization for identity management.

Market in MDM/EMM solutions is difficult due to commodization and heavy competition.

Market for customizable niche MDM products might start growing and market for IoT device

management is expected to grow heavily over few next years.

References:

[1] https://community.hpe.com/t5/Protect-Your-Assets/HP-Study-Reveals-70-Percent-of-

Internet-of-Things-Devices/ba-p/6556284#.U_NUL4BdU00

[2] Julien Mineraud, Oleksiy Mazhelis, Xiang Su and Sasu Tarkoma:

https://arxiv.org/pdf/1502.01181v3.pdf

49 (49)

